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This paper re-examines the theoretical arguments that  indicate the structure of the 
pressure field induced on a flat surface by boundary-layer turbulence at low Mach 
number. The long-wave elements are shown to be dictated by the acoustics of the 
flow, and the limit of the acoustic range is the coincidence condition of grazing waves 
where the spectrum is singular and proportional to the logarithm of the flow scale. 
The surface spectrum is shown to be proportional to the square of frequency a t  
low-enough frequency and to the square of wavenumber a t  those low wavenumbers 
with subsonic phase speed. 

The similarity model successfully used by Corcos for the main convective elements 
of the field is used in this paper to model the turbulent sources of pressure, not the 
pressure itself, so that a Corcos-like description of the pressure spectrum is derived 
that is consistent with constraints imposed by the governing equations. This results 
in a fairly compact specification of the pressure spectrum with yet-undetermined 
constants, which must be derived from experiment. Despite an extensive search of 
published data on the pressure field, it is concluded that existing information is an 
inadequate basis for setting those constants and that new free field experiments are 
needed. Boundary layers formed on gliders or buoyant underwater bodies offer the 
most promising source of such data. 

The paper concludes with a study of how large flush-mounted transducers 
discriminate against the local flow noise field and i t  is shown that they do so a t  a 
rate of 9 decibels per doubling of transducer diameter. This different conclusion from 
Corcos’ correct 6 decibel rate for small transducers is entirely due to the low- 
wavenumber constraints on the spectrum, which are misrepresented in the simple 
similarity model. This result, which conforms with the constraints imposed by the 
weak compressibility of the fluid, is the same as that later suggested by Corcos for 
transducers that are large on the boundary-layer scale. 

1. Introduction 
The pressures induced by boundary-layer turbulence have long been of interest, 

mainly on account of the load they induce on flexible vehicle skins and because of 
the noise they radiate. Fatigue-inducing vibration is driven by the integrated 
pressure field, weighted according to the structure’s response function, so that the 
integral scales of the pressure field are important measures of boundary-layer 
turbulence. The correlation area determines the mean-square level of the force applied 
by a boundary layer to  a flat surface. Phillips (1956) and Kraichnan (1956) proved 
that if a turbulent boundary layer flow were incompressible, as it nearly is a t  
low-enough Mach number, then the integral scale of the surface-pressure field would 
be zero. The wavenumber spectrum of incompressible flow should display a tendency 
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to zero as k2 a t  low-enough wavenumber k .  That result immediately aroused a flurry 
of interest because the low-wavenumber parts of the spectrum are those with most 
practical significance, and the prediction that they are extremely weak is important. 

In  the main the turbulent eddies of boundary-layer flow conform with Taylor’s 
hypothesis that they drift downstream with slow evolution. To first order the 
variation of pressure seen at one point with changing time is a simple reflection of 
the spatial streamwise variation within the eddy; different parts of the eddy appear 
a t  the observation point as time goes by. This view led Lilley & Hodgson (1960) and 
Hodgson ( 1962) to translate the low-wavenumber k2 prediction of Kraichnan’s theory 
into an expectation that a t  low frequency o, the frequency spectrum of the 
boundary-layer pressure field should tend to zero in proportion to w2.  That trend was 
simply not (with the notable exception of the experiments of Willmarth & Wooldridge 
1962) evident in measured spectra of the day because, Hodgson argued, boundary 
layers formed on the walls of’ wind tunnels were subject to unrepresentative influences 
of free-stream turbulence, wall vibration, artificial transition, acoustic noise from 
other parts of the flow-generating equipment, or some other such extraneous effect. 
He therefore instrumented the wing of a glider and measured the pressure induced 
by a tripped turbulent boundary layer on the wing surface in flight. He produced 
preliminary evidence that there was a definite trend for the low-frequency parts of 
the spectrum to scale in proportion to the square of frequency, and this seemed to 
confirm the Kraichnan-Phillips theory. 

But the assumption of the Kraichnan-Phillips theory, that the turbulent flow is 
incompressible, is unreasonable in the spectral range of most interest ; the very- 
low-wavenumber elements must correspond to acoustic waves. Ffowcs Williams 
(1965) showed that the k2 spectral weighting is true only so long as the phase velocity 
w / k  of the spectral element is much less than the speed of sound. At low values of 
the wavenumber (i.e. at supersonic phase velocity) the form of the spectrum is 
dictated by the acoustics of the problem, while a t  zero wavenumber the spectrum 
(whose value there is the pressure field’s integral scale) is entirely set by the level of 
sound radiated from, or to, the boundary layer in a direction normal to the boundary 
surface. The correlation area should scale on the square of the flow Mach number. 
Since the low-wavenumber elements of the spectrum are set by the acoustics of the 
problem, any effective experimental investigation of their form must be done in a 
facility with a controlled acoustic environment. Hodgson’s suspicions that wind- 
tunnel boundary layers were ‘funny’ a t  low wave-number was thus supported, and 
put beyond doubt when Wills (1970) showed that the low-wavenumbcr spectral 
elements of the N.P.L. tunnel boundary layer arc actually the upstream-travelling 
sound waves generated in the tunnel diffuser. 

Bergeron (1973) extended the theory to treat an area of the spectrum that seemed 
singular in the Ffowcs Williams paper; the acoustically coincident waves had an 
apparently infinite strength in the homogeneous boundary-layer model. The homo- 
geneous problem is ill-posed in that the spectral level of the coincident waves diverges 
as the logarithm of the size of the boundary-layer flow. These spectral constraints 
are all outside the scope of the Corcos (1963) modelling of the boundary-layer pressure 
field. That model is in many respects extremely effective, but it rests on similarity 
arguments that must fail for the supersonic phase velocity elements of the spectrum. 
Corcos (1967) pointed out that the early model also fails in that i t  violates the 
inevitable k2 dependence of those low-wavenumber elements in the spectrum with 
subsonic phase velocities. These are significant spectral ranges in underwater noise 
problems. It is the object of this paper to produce a theoretical basis for an extension 
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of the Corcos model to make i t  more applicable to the very-low-wavenumber elements 
of the spectrum. The result of the work is to add support for much of Corcos’ (1967) 
improvements to  his model and give new Corcos-like forms for the spectral elements 
in which compressibility effects are dominant. 

The strategy adopted is to formulate the boundary-layer pressure field in terms 
of Lighthill’s (1952) acoustic analogy and to expand on the developments of the 
Ffowcs Williams (1965) paper. If the analogy is well posed, the turbulence source 
elements should be negligibly influenced by fluid compressibility. They will be 
assumed to conform with the similarity principles proposed by Corcos (1963), and 
the consequent structure of the wall pressure spectrum should then be evident. The 
advantage of this scheme over Corcos’, where he assumed that the pressure field 
conformed with hydrodynamic similarity laws, is that he missed the inevitable 
acoustic character of the low-wavenumber spectral elements, which will emerge 
naturally in our approach. Also, over most of the spectral range where the phase 
velocities are very much less than the speed of sound, our model, like Corcos’ (1967) 
development, enforces the k2 dependence missing in the first Corcos scheme, but is 
indistinguishable from that scheme for those spectral elements with phase speeds 
slower than the eddy-convection speed. Equation (4.11) is the result of these steps 
and should represent an advance on the Corcos modelling. 

The detailed analysis confirms that it is the acoustics of the problem that 
determines the strength of all those low-wavenumber elements with supersonic phase 
velocities. The sound radiated by turbulence and the ability to discriminate against 
self-noise for incoming acoustic waves is therefore set entirely by spectral elements 
whose magnitude cannot be determined experimentally unless the experiment is 
conducted in a facility that  is acoustically anechoic. 

The acoustically coincident elements of the spectrum have a rather extreme 
singularity. Equation (3.18) shows that not only does their level scale on ln(R/A) 
as R tends to infinity, but the delta-function singularity reveals an essential ‘acoustic 
resonance ’ in the model. It now seems that this is an important part of the spectrum 
and that experiments show a concentration of power a t  this condition. Precisely what 
determines the strength of the peaks in practice is an important question that is not 
resolved in this paper and should be studied further. 

Finally we have examined the discrimination ofa  large transducer against the near 
field of a turbulent boundary layer. This we have done in the framework of our 
developed Corcos model. We find that, a t  small-enough flow Mach number, the 
discrimination is a t  a rate of 9dB per doubling of transducer diameter. This result, 
which appears to be very close to that determined experimentally, is quite insensitive 
to the spectral form a t  low wavenumber once that form incorporates a spectral 
weighting that prevents the divergence of an integral involving the asymptotic 
approximation to a Bessel function. The k2 weighting that must be there does this, 
but so would other artificial weightings, a point already noted by Butler & Eatwell 
(1980). 

A comprehensive study reported by Chase (1980) gives model forms for the 
wall-pressure spectrum which are derived from features of the boundary-layer flow 
thought relevant to the pressure field. Our study is generally complementary to the 
points made by Chase, but that  part of our modelling intended to be in the spirit 
of Corcos’ similarity arguments is different - not that that modelling rests on any 
rigorous foundation. Our hope is that by incorporating the more obvious dynamical 
and kinematical constraints into the extremely compact Corcos description of the 
field, we can extend the range of application of that model to the low-wavenumber 
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elements of the spectrum. That is done in this paper, but unfortunately we are not 
able to find in the literature the data on which the usefulness of the model can be 
tested. Even the most comprehensive studies we can find, due to Blake & Chase (1963) 
and Maidanik & Jorgensen (1967) give only a limited view of the spectral form. On 
the other hand we cannot find data that lead us to  reject the model, and since i t  does 
offer a relatively simple description of the field i t  seems appropriate to  put i t  forward 
as a possible aid to the structuring of future experimental studies. 

2. Basic theory 

layer flow is governed by an  approximate form of Lighthill's equation: 
We assume that the pressure field induced by a high-Reynolds number boundary- 

with a p l a x ,  = 0 on the boundary. po is the mean mass density of the fluid, c the speed 
of sound, which is assumed constant, and the wave field is required to satisfy a distant 
radiation condition. 

We choose Greek suffices to represent two-dimensional coordinates in planes 
parallel to  the boundary surface positioned a t  y = 0, and take Fourier transforms in 
the coordinates (x,, t ) ,  so that 

00 

p ( y ,  x,, t )  = 1 p * ( y ,  k,, w)eikaXaeiWtd2k,dw, ( 2 . 2 ~ )  
-a3 

(2.2b) 
1 "  

p*(y ,  k , , w )  = 7j p(y,x,, t )e - ikaxa e-iwtd2x,dt. 
( 2 4  --m 

Equation (2.1) then reduces to  

where 

We proceed to a solution by use of the Green function: 

when $ is real, i.e. when d / c 2  > k i .  
The radiation condition at large y requires that p ( y ,  t )  should have there the form 

of a function of y-cp t, i.e. that  it be an outgoing wave with some positive phase speed 
cp say. 

Therefore if $ is ( w / c ) (  1 -ce2kz/w2)?, then 

from which i t  follows that 
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provided that c2k i /w2  < 1.  
At y = 0, aG/ay must vanish, SO that 

-i$B-ie-Vz-L 2 cos $2 = 0;  

a condition that requires that  

so giving the supersonic phase speed elements of G to be 

i i sgn (z-y) sin $(z-y) 

2+ 
G(y, z )  = - cos (~-y)$+-e-~*(z+Y)+ 

2$ 2$ 

i I n  particular, a t  y = 0 
G(0, z )  = -e-i*z, 

$ 
provided that c2k i /w2  < 1 .  

The Green function for the subsonic phase velocity elements is defined by 

13 

(2.9) 

(2.10) 

(2.1 1 )  

(2.12) 

where 
(2.13) 

The required solution to this equation that is bounded at y = + 03 and conforms with 
the surface boundary condition is 

$; = k; - z  w2 (ki > $1. 

sgn (z-y) sinh +l( z -y )  
. (2.14) 

1 1 
G(y, z )  = -~ cosh $l(z-y)--e-(z+”)*i+ 

211.1 211-1 21c.1 
In  particular, at y = 0 

ecZ$i ( c z  ) w2 
G ( 0 , z )  = -- -> 1 , $; = k i - 2 .  

$1 

The surface pressure can now be determined by superposition : 

so that 

where 

where 

k,, w )  dz,  

$,= Ik,J (I-&)’ (9” 1). 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

These are the specific forms of equation (2.8) of Ffowcs Williams (1965). 
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The cross power spectral density of the wall pressure is formed by multiplying (2.17) 
or (2.18) by its complex conjugate: 

S* is similarly defined in a statistically stationary boundary layer by 

Q*(z,k,, w)&*(z ’ , k~ ,w’ )  = S*(z,z’ ,  ka,w)6(k,+ k i ,w+w’) .  

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23a) 

(2.23 b )  

S*, we will assume, is a function of the turbulence that can be described by the 
similarity arguments first proposed by Corcos, and the consequent constraints on the 
wall-pressure spectrum will reflect those arguments together with elements prescribing 
the acoustics of the problem. 

3. The spectrum at low wavenumber 

and the structure those constraints may impose on the surface pressure spectrum. 
We consider first what constraints there are on the form of S* a t  low wavenumbers 

S* and Q* are determined by the turbulence stress tensor: 

e-ika X, e-iwt dZX , dt . (3.1) 

We integrate this equation by parts into a form that reveals more clearly the 
dominant terms a t  low surface wavenumbers : 

The characteristic wavenumber of the turbulence will be set by a characteristic 
boundary-layer scale A, and at first sight the three integrals in (3.2) have charac- 
teristics magnitudes in the ratios 

1 : k A :  (kA)’. 

Provided that we restrict our attention to elements of the flow at wave-number much 
less than A-’, only the first term in (3.2) need be retained: 

(3.3) 



Boundary-layer pressures and the Corcos model 15 

The derivatives with respect to z ,  the normal coordinate, do give some structure 
to the spectrum, and according to (2.23) the low-wavenumber elements of the 
spectrum can be written 

a 2  a 2  

a 2 2  a z ' 2  
S*(Z,Z',  k , ,W)  = --T*(z,z', k a , w ) ,  

where 
(3.4) 

Both the z' and z-integrals in (2.19) can be carried out by parts, to give 

i.e. 

(3.7) 

where F*(k,, W )  is a spectrum function representing the integrated influence of the 
boundary-layer turbulence, It should be insensitive to fluid compressibility if the 
acoustic analogy is properly posed, and, since the source elements are quadratic in 
the turbulence fluctuating quantities, this spectrum should asymptote to a constant 
as both k, and w tend individually to zero. 

Precisely the same arguments apply to (2.20) in the low-wavenumber limit, so that 

(A-2 $ lci > g). C 

When k i  = 0 2 / c 2  the approximation made in neglecting the second terms in (2.2) 
fails because then the 'leading' term is zero. In  fact this entire method of analysis 
then fails, because there is an essential singularlity in (2.19) and (2.20). We will deal 
with that case later. 

The second term in (3.2) contributes to Q* an amount 

and therefore its contribution to the spectrum S* is 

a 2  
k i ~ T 2 * ( X , Z f , k , , W ) ,  

where 
1 

T,*(z, z', k,, W )  = ~ (2n)3r, Tz,(z,xa,t)Tza(z',x,+ha,t+~) e-ikahae-iwtd2hadT. 

(3.10) 

If this is substituted into (2.19) and (2.20), and the resulting expression is integrated 
by parts, the wall-pressure spectrum receives a contribution 

(3.11) 

(3.12) 

F,* being another characteristic spectrum of the integrated boundary-layer turbu- 
lence, which should be uninfluenced by compressibility. 
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The third integral in (3.2) contributes by itself to X* an amount 

h: Tz (2, z’, k a ,  0) > 

where 
(3.13) 

T:(z,z’, k , , w )  = Ta~(z,x,,t)Taa(z’,x,+h,,t+r)e-ikaA~e-iwtd2h,dr. 
(3.14) 

This in turn contributes to the wall-pressure spectrum a term 

(3.15) 

Fz being a third characteristic spectrum of the integrated boundary-layer turbulence, 
which should, a t  low Mach number, be uninfluenced by compressibility. 

Provided that we have extracted the essential field structure through this 
formulation, the spectral functions F will contain no subtleties of form. We assume 
that this is so and that they all have similar magnitudes, scale on p i V A 5 ,  and are 
set by the paramaters U and A ,  the characteristic flow speed and boundary-layer 
thickness. The momentum thickness may well be a more relevant scale, but strong 
arguments to that effect seem difficult to support. Equations (3.12) and (3.15) show 
that, a t  low enough wavenumber, k: < 0 2 / c 2  < A-2, the rank ordering of terms that 
appeared obvious following (3.2) is in fact correct. The wall-pressure spectrum is 
dominated by elements arising from the first term of (3.2) and has the limiting 
asymptotic low-wavenumber form given by (3.7) : 

0 2  

c2 
P*(k,, W )  = - F*(ka, O )  

or (3.17) 

where F is a non-dimensional spectrum of the integrated boundary-layer turbulence. 
On the other hand, when IC: 9 w2/c2 ,  all the three integrals in (3.2) lead to terms 

of the same structure and order of magnitude; (3.8), (3.12) and (3.15) indicating 
contributions of the form 

kEF*(k,, w ) .  

The three terms in (3.2) will probably interact, but the kg weighting to the 
spectrum is a common feature of all the low-wavenumber subsonic-phase-velocity 
elements of the wall-pressure spectrum, which will therefore have the structure 

P*(k,, w )  = p2u3A3 F ( A k a , g )  (I 9 (k ,A)2  B ($)’). (3.18) 

There are serious difficulties in handling the third term of (3.2), or at least the 
pressure field that term generates, at the acoustically coincident wavenumber where 
k: = w2/c2 .  This is evident from (3.15), and is due to  the scale effect, or the 
two-dimensional form of Olbers’ paradox. The wave field radiated by an unbounded 
sheet of sources is singular, and the foregoing analysis, which exploits statistical 
concepts for stationary fields, must be abandoned. To overcome this difficulty and 
illustrate the way in which the singularity is formed we might consider a type of 
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initial-value problem in which we supposed that the spatially homogeneous boundary- 
layer turbulence is switched on a t  time t = 0 and thereafter has temporal statistical 
stationarity also. The sound field would then, we expect, grow in strength as 
information from an ever-increasing area of sources reaches any observation point 
and adds to the acoustic level. Alternatively, and this is the course we follow, we can 
suppose that the boundary-layer turbulence is homogeneous over a circular area that 
is bounded at a large radius R. The flow is very many boundary-layer scales big, but 
its finite extent allows consideration of a locally stationary problem in which the level 
of the surface-pressure field diverges as the radius R tends to infinity. Precisely what 
parameters determine how a realistic value of R is set is a significant practical matter. 

4. The acoustically coincident waves 
Equation (2.1) has the solution 

where the integration covers the turbulent flow and its image in the rigid flat surface. 
Because the singularity is connected with the scale effect, being the singular field 

set up by the sources that extend over an infinite volume, we can ignore the local 
sources in examining its structure and approximate equation (4.1) by its far-field 
form, where 

X - Y  

Y 
lx-yJ= y--2 Y = lYl ,  

(4.3) 

The cross-correlation of the radiated pressure is obtained by quadrature : 

(4n)2p(x,t)p(x+A,t+7) = (4n)2P(1,7) 

If the source is statistically stationary in y, t ,  then this is equal to  

(4.5) 

where 
S(z, z’, <, 7 )  = Q(z, Y, t )  Q(z’, Y +5,  t+7 ) .  

The scale effect is now evident, the y-integral being unbounded for fully homo- 
geneous flow. However, when we insist that  the turbulence exists only over a large 
boundary-layer ‘disk ’ of radius R, then 

P(A,7) = ’r dzdz‘d2< 277 -ddedy 
(47~)~ Y=A 8-0 C Y 

The lower limit on y has been set as A, the characteristic boundary-layer scale, 
because it is on that scale that (4.1) was approximated to  its far-field form. The suffix 
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r is used in these equations to indicate the component in the direction of y, i.e. 

The wall-pressure power spectrum from these extensive acoustic boundary-layer 
sources can now be obtained from the Fourier transform of (4.6) according to (2.21), 

y . n / y  = /Ir. 

( 2 4 3 ~ * ( k ,  to) 

x exp [ - i (. --::I. 21 d21 d2< d7 dz dz' d0,  

(4.7) 

i.e. 

Without loss of generality, we can choose to write 

y1 = y cos 0, y, = y sin 8 ;  

The integral over 0 in (4.9) can then be performed as follows: 

whcre 

(4.11) 

(4.12) 

w 
k ,  = - c cos B,, (4.13) 

(4.14) 

Equation (4.9) can then be rearranged through these equations into the form 

The function 

which in turn is identical with 



Boundary-layer pressures and the Corcos model 19 

so that a neater form of (4.15) can be written as 

(4.16) 

This is a form that demonstrates clearly the nature of the singularity a t  the 
acoustic coincidence frequency when w2 = c2k2, which arises because of the fluid's 
wave-bearing ability, and the sensitivity of the model to unbounded source arrays, 
the field diverging logarithmically as the scale of the turbulent zone becomes infinite. 

Not all the stress-tensor elements contribute to the term X* in (4.16) because all 
those involving the coordinates normal to the surface integrate directly to zero. S* 
is a spectrum of guadrupole source elements whose axes lie entirely in the boundary- 
layer plane; it is therefore proportional to k4 at  low wavenumber. But since the only 
elements of Y* that are non-zero are such that k4 = w4/c4, (4.16) can be expressed 
as 

P*(k,w) = In ('d);: - -8 ( k 2 - -  ;:) F* (k,w), (4.17) 

where, again, F* is an integrated turbulence spectrum function. This equation can 
also be put in a non-dimensional form compatiblc with (3.17) and (3.18) to indicate 
the structure of the wall pressure spectrum a t  thc acoustically coincident 
wave-numbers : 

€'*(ha, w )  = p : V A 3  In (:) - {$j(d{ (Aka)2- ($)2]  F(Aka,  g). (4.18) 

Equation (3.17) gives the asymptotic low-wavenumber spectrum a form that 
depends essentially on the fluid's compressibility. Equation (4.18) gives the acousti- 
cally coincident elements their individual resonant structure, while (3.18) describes 
the low-wavenumber spectrum above the coincident frequency where the behaviour 
is uninfluenced by the speed of sound. 

5. The Corcos spectrum 

form 
Corcos (1963, equation (16)) assumes that statistics of the wall pressure have the 

r ( w , [ , q )  = @ @ ) A  (5.1) 

In the notation of our previous sections, this is 

W ,  7) = R(E, y,7) = P(x,, ~ 2 ~ 4  P ( X ,  + L ~2 + V ,  t + 7), 
1 = ( E , V ) >  

(5 .3)  

[ being the downstream coordinate. 
The corresponding cross-spectral density is 
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i.e. 

where 

15.7) 

Corcos gives forms for both A and B that  seem to agree well with experiment. 
Since @ ( w )  that  best fits the Corcos model seems to  be finite as w approaches zero, 

we see that the wavenumber/frequency power spectral density is singular a t  the 
origin, being proportional to  w - ~  as w tends to zero keeping k / w  constant. But for 
any fixed finite k the spectrum is zero at w = 0, the functions A* and B* decaying 
so rapidly as to negate the effects of the multiplier. The singularity is integrable 
and contains no energy. 

With the results of the foregoing analysis we can modify the Corcos model so as 
to account for the influence of compressibility a t  low wavenumber while retaining 
the apparently good agreement with experiment at the higher values of wavenumber 
where the spectrum is immune from the influence of compressibility. 

The spirit of the Corcos model is to assume that the parts of the turbulence 
spectrum that are uninfluenced by compressibility are separable in the two 
wavenumber coordinates and also obey a similarity principle. Thus we might extend 
that view without violating the constraints imposed by dynamical considerations in 
supposing that the source function has the similarity properties previously ascribed 
by Corcos to the pressure field, and this can be done by setting 

where 

(5.9) 

(5.10a) 

co 

(5.10b) 

The functions a,, A ,  and B, would have to be found from experiment, but they 
have been chosen in such a way that we except them all to be asymptotic to a constant 
at low-enough values of their respective arguments, and to vanish exponentially as 
their argument tends to infinity. The absolute level of the spectrum will of course 
also have to be determined from experiment and incorporated into constants scaling 
(3.17),  (3.18) and (4.18). We will denote those constants by a,, a, and a2 in writing 
down the general similarity expression for the wall pressure spectrum as 

s_, 

a , (Ak)*+a ,  i"p>z - +a, In (f) - cy 6 [  ( A k ) z  -r+>z]], (5.11 a )  



Boundary-layer pressures and the Corcos model 21 

where M = U / c .  
P*(k, w )  has not been measured experimentally, and it is possible at this stage only 

to test specific integrals of (5.11) against experimental data. The most commonly 
measured function is the frequency spectrum of the pressure field CD(w): 

where 

@ ( w )  = J P*(k,  w )  d2k 
00 

(5.12) 

(5.13) 

y = a,nA,( 1 )  Bo(0) when M is sufficiently small. (5.14) 

CD,(wA/U) is, by the defining equation (5.9), the frequency spectrum of the 
integrated turbulence source function, a function containing quadratic terms in the 
fluctuating velocity and whose spectrum will therefore tend to a constant as w tends 
to zero. 

The frequency spectrum of boundary-layer-induced surface pressure fluctuations 
must, according to this model, tend to zero as the square of frequency when that 
frequency tends to zero. Though this has been regarded as a constraint on the 
spectrum for many years (Hodgson 1962), i t  is still proving difficult to verify the result 
experimentally (cf. Farabee & Geib 1976) and to determine the constants in (5.13). 
In  fact the picture is still very confused. Hodgson's experiments on a glider wing that 
showed a definite w2 low-frequency dependence were contradicted by his later glider 
measurements (Hodgson 1971). He formed the view that the low-frequency parts of 
the wall spectrum were much influenced by the pressure gradient in which the 
boundary layer was evolving, and that no w2 range could be found in the absence 
of the pressure gradient. Panton et al. (1980), who also conducted measurements on 
a glider, but on the fuselage as opposed to Hodgson's wing measurements, disagreed 
with Hodgson's conclusions and thought they had definite evidence for an w2 
low-frequency asymptotic form, though their measurements were contaminated by 
noisy instrumentation a t  very low frequency. 

Equation (5.13) shows that according to this model the shape of the normalized 
frequency spectrum is independent of flow Mach number; only the level is affected 
by compressibility. Panton & Linebarger's (1974) incompressible flow modelling of 
the spectrum was seemingly compatible with the Panton et al. (1980) measurements, 
so that their model could be used to estimate the form of a@, which is equal to their 
normalized frequency spectrum. 

There do not seem to be any published data for reliably estimating the constant 
levels of either A,  or B, a t  low wavenumbers. Though the forms suggested by Corcos 
(1963) fit the data well in the main convective regime where w l k  - U ,  when his forms 
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are adopted for A ,  and B,, the resulting wavenumber spectrum does not display the 
Ic2 weighting a t  low I c ,  nor does the frequency spectrum show the o2 weighting a t  low 
frequency. There is no doubt that  because those spectral elements with supersonic 
phase velocity are intimately concerned with the sound field, they cannot be 
measured in a facility lacking anechoic properties. The glider measurements seem to 
be one of the most promising sources of information, but underwater buoyant bodies 
operated with transducer arrays for filtering specific wave-number components could 
form an ideal experimental facility. As yet little data is generally available from such 
sources. What is known does not suggest the general form given in (5.11) to be 
inappropriate. 

6. Discrimination of a large circular transducer against the near field of a 
turbulent boundary layer in incompressible flow 

When a pressure transducer lies flush in the surface that supports the boundary-layer 
flow, i t  responds to the overall force F( t ) ,  and not simply to the pressure, and this 
can be calculated in the manner suggested by Uberoi & Kovasznay (1953) as follows: 

F ( t )  = p(x, t)d2X s, 
n n  

= J, ~sp*(k,t)e”.Xd2xd2k.  

We may take the transducer surface to be a disc of radius a centred a t  the 

ra 

or, by taking Fourier transforms of both sides, 

a 
F ( w )  = J, 27rk-p*(k, w )  J,(ka) d2k. 

( 6 . 5 )  

(6.6) 

(6.7) 

The power spectrum of the transducer response is obtained by multiplying this 
expression by its complex conjugate and averaging. 

F ( w )  F(w’) = F*(w)S(w+o’ )  (6.8) 

= 1, j G p * ( k ,  w)p*(k’, w’)J,(ka) J,(k’a) d2kd2k’ 

= jm P*(k, W )  S(W + w’ )  J@u) d2k, 

i.e. the spectrum of the transducer response to the wall-pressure field is 

F*(w)  = 47r2a2 j , m P * ( k ,  k2 o) d2k. (6.10) 
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The form of the spectral function in (5.11) can be inserted into this integral for 
a more complete specification of the response. 

The small and large transducer asymptotic limits 

If the circular transducer is small enough, then J: (ka) /k2  can be approximated by 

(6.11) 
its asymptotic form as a 4 0 :  

In  this case the infinitely small transducer would measure the mean-square surface 
loading : 

F*(w) = n2a4 Jm P*(k, w )  d2k 

~ N &2. 

k2 a+o 

a-o 

= (nu”)” P*(w), (6.12) 

i.e. the mean-square force on the piston is simply the piston area squared times the 
mean-square pressure a t  a point. 

On the other hand, if the piston is very large, then we might consider the 
asymptotic form of J:(ka)/k2 as a tends to infinity, 

(6.13) 

so that the large-transducer form of (6.10) is 

sin2 (ka --in) P*(k, w )  d2k. (6.14) 
2 

nk3a 

In  this integral, sin2 (ka- in) ,  being a rapidly varying function for large-enough 
a, can be replaced by its average value of 4, in which case 

(6.15) 
F*(w) - 4noJmP*(k,w)-. d2k 

The integral is convergent a t  low k because P*(k, w )  - k2 in incompressible flow : 
both a,  and a2 in (5.11) are then zero. If this feature of the spectrum were not 
recognised, this form of analysis would fail because of the singularity a t  low 
wavenumber. We can now allow for the detailed spectral form in (6.15), but i t  is 
sufficient to note that because the wavenumber scale is set by w / U ,  

k3 a+m 

(6.16) 

where the integral is independent of a.  
When this is compared with (6.12) one can see that the ratio of the load spectrum 

(6.16) measured with a large transducer (in the sense that the size parameter 
aw/U % 1 )  to that measured with a small transducer (6.12) is proportional to ( U / U ~ ) ~ .  
A doubling of the large-transduccr diameter will lower the apparent mean-square 
pressure measured at any one frequency by 9 decibels. This confirms both Chase’s 
(TRG-011-TN-65-2) and Corcos’ (1967) conclusion, but differs from the earlier model, 
in which the low-wavenumber elements were misrepresented and discrimination 
against local turbulence appeared to scale as ( U / U ~ ) ~ ,  i.e. 6dB per doubling of 
diameter. Actually, the only influence of the essentially kinematic constraint that 
produces the scaling of the spectrum a t  low wavenumber is that the wavenumber 
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integral in (6.16) is made non-singular. This allows the asymptotic form of the 
large-transducer response to be derived, and that form is essentially uninfluenced by 
the form of the pressure spectrum at low wavenumbers. Without the correct 
spectrum, the asymptotic form of the integral would diverge a t  low wavenumbers, 
so forcing the use of a more complete specification of the Bessel function and in turn 
erroneously emphasising the detail of the low-wavenumber spectrum. Any 
suppression, real or artificial, of the low-wavenumber spectrum allows convergence 
of the integral in (6.15) and gives the correct result for the transducer response. The 
discrimination of 9dB per doubling of transducer diameter is consistent with the 
values measured by Mr C. J. Kirby in experiments, and this theoretical derivation 
of the result is entirely consistent with a parallel analysis of the problem by Butler 
& Eatwell (1980), who arrived at the same conclusion. 

This work was carried out in collaboration with Topexpress Ltd with the support 
of the Procurement Executive, Ministry of Defence. 
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